<2"d>[International Conference on Teaching Programming Languages</>

Go Functional! — The Elixir of Programming

dr. Péter Hanak, Viktor Gergely
Budapest University of Technology and Economics, Hungary
phanak@edu.bme.hu
viktor.gergely@erlang-solutions.com

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 1/14

Algorithms + Data Structures = Programs

In functional programming:

* algorithms are functions, n

- data are immutable, and el e

* each program is an expression
composed of other expressions.

* Each function has a return value,

* an expression is composedof 777
functions applied on data,

* expressions are evaluated. 1976

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 2/14

Teaching Functional Programming (FP) at BME

Part of the course Declarative Programming (DP) at the Faculty of
Electrical Engineering and Informatics, BME, since 1994:

* Standard ML (New Jersey and Moscow ML), 1994-2008

- non-strict, modular, statically typed, formally defined, open-source,
academic

* Erlang (2008-2020)

- non-academic, dynamically typed, interpreted, outdated syntax

* Elixir (from 2021)

- practice-oriented, functional, modern syntax, built on top of Erlang and its
virtual machine, BEAM

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 3/14

Motivations

Originally: proving the correctness of ...

* (imperative) programs is difficult,

* recursive (stateless) functions is much easier, as it can be based on induction.
Later, additionally: by writing functional programs,

* the student acquires a good style and discipline of programming, as a
functional program is ...

- built on well-established mathematical notions such as values, expressions, immutable
data, names (unbound or bound to values), side-effect free and stateless functions,

- modular, i.e. composed of many small functions performing small steps of
transformation on immutable data, and returning results,

- built on recursivity, i.e. composed of recursive functions and data structures.

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 4/14

First steps with interactive Elixir

hanak@gondola:~/Edu/dp/24s/2ictpls iex
Interactive Elixir (1.15.7) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> 3+4

iex(2)> seven = 3+4

iex(3)> seven

iex(4)> myLinkedList = [1,3,7,11]
Ee;;(si:- I;d(m;LinkedList)

iex(6)> tl(myLinkedList)

Ee;(?i:- mg:,IrLi.nkedl.i.st [> tL() |> hd()

iex(8)> myLinkedList |> tl |> Enum.map(fn(x) -> 2*x*x end)

[18, 98, 1
iex(9)> for x <- tl(myLinkedList) do 2*x*x end
[18, 98, 1

iex(10)> Enum.sum(tl(myLinkedList))
iex(11)> myLinkedList |> t1 |> Enum.sum

iex(12)> Enum.reduce(tl(myLinkedList), ®, fn(x,y) -> x+y end)

iex(13)> myLinkedList |> tl |> Enum.reduce(@, fn(x,y) -> x+y end)

vex(iass I Shopping carts form a linked list

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 5/14

GCD with Elixir Livebook

localhost:8080/sessions/5so2rof5vwus2h2qusfkqt4z5ugmygo65age 7Tm4ayyah2fs3F

dpWeb dpwiki € Fb Rz RCod (€ CAPTCHA: Hel... Internationaliz... W3 Status codesi... @ Signinto men...

Go Functional!

in = My Hub +

Greatest common divisor with Euclid's algorithm

ged(a :: integer(), b :

: integer()) :: d :: integer()

.puts()

» Help

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming

2" ICTPL, April 5, 2024 6/14

GCD with Elixir Livebook

Greatest common divisor with Euclid's algorithm

ged(a :: integer(), b :: integer()) :: d :: integer()

puts()
.puts()

¥ Help
ifa =b- g+, the ged(a,b) = ged(b,r), where a, b, g and r are integers.
In each recursive step, subtract the smaller parameter from the larger one until they become equal.

See: https://en.wikipedia.org/wiki/Euclidean_algorithm

+ Elixir ~ + Block + Smart

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 7114

GCD with Elixir Livebook

Greatest common divisor with Euclid's algorithm

integer(), b :: integer()) :: d :: integer()

¥ Help
Ifa =b-q+r, the ged(a,b) = ged(b, r), where a, b, g and r are integers.
In each recursive step, subtract the smaller parameter from the larger one until they become equal.

See: https://en.wikipedia.org/wiki/Euclidean_algorithm

© Evaluate v 8 & @ ~ v W

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 8/14

GCD with Elixir Livebook

¥ Help
Ifa ="b-q+r,the ged(a,b) = ged(b,), where a, b, g and r are integers.
In each recursive step, subtract the smaller parameter from the larger one until they become equal.

See: https://en.wikipedia.org/wiki/Euclidean_algorithm

© Evaluate v B8 & @ ~ v [

odule Ged do
gcd(a ::

- o h— “eatest | N CITEE T m~ ~ =anrl b

def ged(a, b) do

integer(), b :: integer()) :: :: integer()

) |> 10.puts()
). puts()

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 9/14

GCD with Elixir Livebook

¥ Help
Ifa =b-q+r,the ged(a,b) = ged(b, r), where a, b, g and r are integers.
In each recursive step, subtract the smaller parameter from the larger one until they become equal.

See: https://en.wikipedia.org/wiki/Euclidean_algorithm

© Evaluate v

gcd(a :: integer(), b :: integer()) :: d :: integer()

a
b >a, do: ged(b
-

gcd(a-b, b)

: .puts()
.puts()

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 10/14

GCD with Elixir Livebook

In each recursive step, subtract the smaller parameter from the larger one until they become equal.

See: https://en.wikipedia.org/wiki/Euclidean_algorithm

© Reevaluate v B3 & @ ~ v I

spec ged(a :: integer(), b :: integer()) :: d :: integer()

h > a, do: ged(b - a, a)
lo: gcd(a-b, b)

) 10.puts()
> I10.puts()

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 11/14

Concurrent programming with Elixir

» With Elixir’s language constructs, it is easy to

spawn lightweight processes, locally or remotely,

send messages from a process to other Processes, incl. remote ones,

receive messages from processes, incl. remote ones,

detect the death of processes,

remove and restart Processes,

* so Elixir is suitable for learning the basics of concurrent
programming;

* but, because of time limitations, we do not teach the concurrent and
distributed features of Elixir in our DP course.

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 12/14

Summary, conclusions

* Functional programs are ...

- built on well-established mathematical notions such as values, expressions, immutable data,
names (unbound or bound to values), side-effect free and stateless functions,

- modular, i.e. composed of many small functions performing small steps of transformation on
immutable data, and returning results,

- built on recursivity, i.e. composed of recursive functions and data structures.
* Learning FP is a natural way to programming for all students who learned

elementary mathematics such as arithmetic, expressions, math functions and math
variables.

* Elixir is a modern FP language utilizing Erlang’s modules and its virtual machine,
BEAM. Elixir’s Livebook is a superb interactive environment for learning
programming with Elixir.

» Starting with FP, the student acquires a good style of programming, characterised by
separation of concerns, modularity, granularity, recursivity, immutability, etc.

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 13/14

Thank you for your attention!
elixir

Elixir’s home: https://elixir-lang.org/
Elixir’s Livebook: https://livebook.dev/

P. Handk, V. Gergely: Go Functional! — The Elixir of Programming 2" ICTPL, April 5, 2024 14/14

https://elixir-lang.org/
https://livebook.dev/

